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I. INTRODUCTION

Description of the scattering of both acoustic and electro-
magnetic waves by localized turbulent structures (turbules) in the
atmosphere is currently of great interest. The usual model of an
individual turbule consists of a localized region in which the
atmospheric mass density differs from that of the surroundings;
such a model can be described in terms of a variable refractive
index. (See, for example, Ishimaru 1978). The principal purpose
of the work reported here was to investigate the effect on acoustic
scattering of including realistic flow velocities in a model
turbule; to the best of the author's knowledge, this has not been
done previously. In order to achieve this purpose, it was first
necessary to develop the appropriate acoustical wave equations and
descriptions of the scattering from the fundamental fluid
equations.

This report is organized as follows. In section II, the
above-mentioned theoretical structure that was developed is pre-
sented, along with the appropriate scattering theory. The basic
fluid equations were chosen to be those for an ideal fluid with
negligible heat flow. The principal results quoted in this section
are i) that the logarithm of the ratio of the fluid particle number
density inside a quasistatic turbule to that of the surroundings is
proportional to the square of the ratio of the turbule flow speed
to the acoustic wavespeed in the surroundings, in the absence of
sound waves, and ii) the acoustical wave equations, in terms of
small space and time-dependent variations in number density and
fluid velocity with respect to their local quasistatic values,
include terms that are first order in this ratio. Since this ratio
is generally quite small, the presence of such first-order terms in
the wave equations presages the possibility that the contributions
of these terms to the scattering might dominate those of the
density variations.

In section III, the application of the theory to a realistic
quasistatic nonuniformly spinning turbule is presented. Two
approaches to calculating the acoustical scattering are discussed.
One is the Born approximation. Analysis is given to show that this
approximation should be reasonably valid for turbule size parame-
ters ka < 5 and very good for size parameters < 1. (Here, k=2v/
(incident wavelength), a = effective radius). Another is the
digitized Green function (DGF) method, which should be applicable
to a turbule of arbitrary structure and size (Goedecke and O'Brien,
1988). However, during the course of the work reported, the author
was unable to apply this method to the complete equations; its
application is thus far restricted to the equations in which only
the first-order terms in the above-mentioned ratio are retained.
The principal results quoted in this section are the Born approxi-
mation scattering efficiency vs. scattering angle for several
values of size parameter, and of total scattering efficiency vs.
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size parameter. The major findings are that i) the above-mentioned
first-order terms in the wave equations produce scattering cross
sections about three orders of magnitude larger than do the terms
involving density changes alone, for realistic values of the flow
parameters, over a range of size parameters from 0.25 to 2.0, and
ii) these first-order efficiencies are proportional to (ka)6, while
the efficiencies due to density variability have the expected (ka),
dependence, for ka < 2.

In section IV, a brief discussion is given of the results of
the work performed and of needs for future development. In
particular, it is suggested that even more realistic quasistatic
turbule models should be investigated. These include "smoke
rings," i.e., toroidal flow patterns. But this requires another
development from first principles, because such vortices must
translate as a whole at constant speed in still air in order to
exist. Also, it is suggested that the DGF method be developed
further and eikonal methods also be developed for application to
the problem.
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II. THEORY

A. Fluid Equations

1. General. We consider a fluid with negligible viscosity and
heat conduction. For simplicity, we let the fluid be a single-
component ideal gas; extension to a multi-component fluid is
straightforward. The fluid equations involve the number density
n(r,t), the velocity field (V(f,t), the pressure p(r,t), the tem-
perature T(r,t), the internal energy density U(£,t), and the mass
m of the atoms, as follows:

an/at + V(nV) = 0 (1)

av/at + vVV = -Vp/mn (2)

au/at + V-(vu) + p V., = o (3)

p = nkBT =rU, r = y-l, (4)

y = cp/c, = ratio of specific heats

The first two equations are those of number (mass) continuity
and the Euler equation for an ideal fluid. The third is the
thermal energy flow equation; it results from the more complete
energy continuity relation

at(½nmV2 + U) + V-[V(U+p) + ½mnV V + Q= 0, (5)

when the heat flux Q = 0, in view of eqs. (1) and (2). Eq. (4) is
the ideal gas equation of state and the expression of equipartition
for the model fluid.

Combining (1), (3), (4) yields

T- (aT/at + .V_) + r.v- = 0 (6)

Rewriting (1) yields

rn-1 (an/at + V'Vn) + rV'V = 0 (7)

Combining (6) and (7) yields

at [r tn(n) - tnT] + V.V[rtn(n) - tnT] = 0 (8)
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Since we have assumed zero heat flux (adiabatic conditions), we

should have

p = Cn7, c = constant (9)

But, since p = nkBT also, we have

T = Cnr/kB (10)

But then eq. (8) is satisfied identically. Thus, we can eliminate
T from eqs. (1)-(4). In particular, we may write (2) as

aV/at + V = - (ykBT/m)n-1 Vn = - (yC/rm)Vnr (1i)

We assume that the fluid contains a localized region R cen-
tered at the origin of coordinates in which there is a quasistatic
departure of n and V from their uniform constant background values
at spatial infinity. Also, we assume that there can be a small-
amplitude wavelike disturbance in n and V everywhere in the fluid.
That is, we assume

n(r,t) = no() (i + C(ft)), (12)

V(r,t) = ;(i) + u(F,t), (13)

where Ije <<1 and JuJ is "small." Also, we assume that as r-w,

n,(r) - n. = const, ;(r) - 0. (14)

The form of eqs. (7) and (11) suggests that we define

En(n/n.) = *(£) + e(P,t), (15)

where we've used (12) and kept terms to first order in e(r,t) only,
and *(r) is defined by

= tn(n.(r)/n.) (16)

As we shall see below, I*(f)I<<1 for realistic turbules. So,
when we substitute (12, 13, 15) into the fluid equations (1) and
(11), keep terms of order (E,ii,*,v 2,c*,U-#) only, and require that
the time-dependent terLs and the static terms in the equations be
separately equated, we get

vV = - (17)

+ =0

aC/at + i. + .. =- C2.1 (AE) (18)

ae/at + . + Ui.v + Vý-U = 0,
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where

A= 1 + r* (19)

and

c= ykT./m (20)

is the square of the asymptotic wavespeed. Equations (17) are the
static (zeroth order in c,u) equations that a quasistatic turbule's
motion and density should satisfy, for adiabatic conditions.
Equations (18) are the acoustic equations for a wavelike distur-
bance in the presence of the turbule.

Now, as r-c, *=o, v=0, so, if Vxv = 0, we have from

* = - V2 /2C 2 . (21)

For cases of interest, v/c.<<l, so 1*1 <<<1; # is second order
in the small ratio v/c.. If Vx! 0 0, which is likely, it is still
clear from (17) that 1#1 is of order v2/c 2., for if v s0 everywhere,
then, in view of the boundary conditions, # a 0 everywhere.

In the acoustical equations (18), we may consider time
dependence e-i~t, since these equations are linear in (c,iu) and none
of the coefficients depend on time. Thus, we get

-ifu + C. V(Ac) + wV' + 0'v = o (22)

-ioc + v.i + •.• + ii•.•* = 0

If we are given *(r) and v(r), localized in R, and given a
plane wave incident from infinity, then in principle we can solve
these equations for (e,U) inside R, and then predict how the
incident wave scatters.

2. Wave equations. The first step in obtaining wave equations of
the appropriate form for describing scattering is to decouple eqs.
(22). This is algebraically difficult, but becomes reasonably
simple if we consistently discard terms of order v 3 and higher,
remembering that # is of order v2 . In the ensuing manipulation, it
helps immensely if we put the equations in dimensionless form. To
do this, we define or redefine several quantities, as follows:

k w u/c. = 2v/1, 1 = incident wavelength

r - kr - r; V* kV(,r) w k0 (23)

v/c. - •; u/c.. U

S= A
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With these substitutions, and keeping only terms up to 0(v 2), eqs.

(22) become

ii -iV 6 +~

6 = -i(AV'6 + •-V6 + U'V0] (24)

where

F - i(~v' + uV•) (24a)
It is easiest to eliminate 5 from eqs. (24). After some algebra,

the following equation results:

(V2+1)u = (V2+1)F + V(U - V'F) i S(r) (25)

where

U --V - r*ii - iii; + iiP (26)

Eq. (25) is in the "standard form" that allows a Green's function
treatment of the scattering problem; the source function S goes to
zero rapidly for r>a.

B. Scattering Theory

1. General. We consider a plane wave of unit amplitude for the
relative density disturbance e(r) incident from infinity in
direction k. Then

=in(r) exp(ik'i) - uj,(r) = i exp(ik'r) (27)

This form for ui,(P) follows from eqs. (22) with * m 0, ; = 0. Now,
we write down the Green's function implicit solution for eq. (25),
for outgoing scattered waves:

u(i) = uin(r) - (47r)" f d 3r'(eiR/R)S(7') (28)

where

R - •'I (29)

and the integral on i' is over all space.

The second term on the RHS of (28) is the scattered wave
i,( ). For r - c, we get

6.(r) -0 (keir/r)ef (k,:t) (30)

where the scattering amplitude f(k,t) is

10



f(k,f) = -(4wk)'1t'fd 3r' exp(-it'r')S(r') (31)

The form (30) of the scattered wave for r -xa follows because u,(P)
must also satisfy eqs. (21) for *=O, v=O; so we must have for r-co

u.(r) = 0Ve.(r) = t e.(i). (32)

This says that the outgoing spherical scattered wave must be longi-
tudinal.

It is straightforward to show that the standard definition of
the differential scattering cross section, equal to the average
(acoustical) power scattered per unit solid angle divided by the
incident power per unit area, leads to the identification of the
relevant cross sections just as in standard scattering thkýory in
quantum mechanics or electromagnetism.

In the scattering of electromagnetic waves by a spherical
dielectric particle of radius a, the important quantities are the
size parameter, ka = 27ra/1, and the scattering efficiencies, which
are equal to the scattering cross sections divided by the geometri-
cal cross section ra . In our treatment of the acoustical problem,
an cffective radius a will be a parameter of any mcdel turbule.
Thus, the important scattering efficiencies will be the following:

Q(k,t) = If(k,f)12 /wa2 = differential scattering efficiency
(33)

Q,(k) = JdnQ(k,k) = total scattering efficiency (34)

Q.(k) = (4/ka2 ) Im(f(k,ik)) = extinction efficiency (35)

Eq. (35) is part of the "optical theorem," which states that
Q. = Q. + Q., Q. = absorption efficiency. Here, Q, = Q,, because we
have not included viscosity, so there is no absorption.

If we substitute eq. (25) for S into eq. (31), we get
immediately on integration by parts

f(k,fl) = -i(4rk)-' fd 3r'(U(r')-VF(r'))exp(-if-'). (36)

Unfortunately, we cannot simply evaluate this integral, because the
integrand contains the unknown wave Zi(r') and its deriva'_Ivýs. In
what follows, we first derive the Born approximation -- t this
problem; then we derive a digitized Green's function approach
(Goedecke and O'Brien, 1988).

2. Firrt Born ADproximation. This consists of replacing the
actual wave Z(P') by the incident wave uin(r') wherever the former
occurs in the integrand of (36). In the corresponding problem in
electromagnetic scattring by dielectric particles of average
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radius A, refractive index m, this approximation is valid only for
I m-1Ika << 1. We don't have a true "refractive index" in this
problem; but in what follows we will specify conditions under which
this approximation should be valid for this acoustic scattering
problem.

We have treated only cases for which V0 = 0, so what follows
is valid only for this condition. After considerable algebra, we
get from (24a, 26, 36)

f = f(1) + f( 2 )n + f(2)V (37)

where

f(l) = - (27rk)-l cos0EIi(1)j

f = +(47rk)-1(1-y + l-coso)I(7)n (38)

f (2) - - (47Tk) -{ (1-cosO) (I(2)v)l -kikj(I(2)"),j}

where summation convention is used, and

1(1)i mfd3r'vj(r') exp(iK'r')

I(2) n is fd 3r' £'exp (iK'r£') (39)

(I(2)v) j a ½fd3 r'vi(r' )vj(r')exp(iKr')

where

K- k-f (40)

Here, f(l) is the contribution that is first order in the
turbule velocity v; f(2), is second order in this; and f( 2)n is the
only contribution that would occur if the turbule density were
nonuniform but the flow - were set equal to zero.

This is as far as we can go without specifying a flow v(r) and
a logarithmic density variation *(f) for the turbule. We report
this in the next section.

3. Diaitized Green Function Solution. This method was originally
developed to allow modelling of electromagnetic scattering by
dielectric particles of arbitrary shape and morphology (Goedecke
and O'Brien 19C8). The method would normally begin from the causal
Green's function solution (28) of (25). In order to use the DGF
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method, we would have to reduce the Green's function implicit

solution first to the form

ui(r) = un1 i(r) + fdr'Kij(,r')uj(r) (41)

where Kjj is a known function involving v, *, and the Green's func-
tion, and their derivatives. We have not yet been able to do this.

We have been able to express a Green's function solution for
e(r), valid.only to terms of first order in v, in this form. The
result for V'9 = 0 is

c(r) = Cin(r) + fd 3r'K( ,i')c(i') (42)

where

K = KA + KB (43)

r1) = (4n)-y eiR1i(iR-R- 2) (2ivf(£') + a'avi(r)) (44)

KB(rr') = (4r)-' eiR(_iR- _3iR-+3R-r (45)

This result is usable, since we know that v<<1 in application, so
the first order terms in - should usually dominate second order
contributions to the scattering.

In order to proceed with the DGF method, we have to choose
analytic expressions for vi(r'), so that we may evaluate the deri-
vatives a'jvt(r'), a•'aj'v±(f') at any point r'. Then K(rr') is a
known function. Then we subdivide the region R into cubical cells
of some side length d, with cell number _ centered at r = r-. Then
eq. (45) becomes a matrix equation,

Ec = Ein.* + KQ eC (46)

in obvious summation notation, where

K.# = d 3K(r, r)). (47)

Then we invert this matrix equation numerically, given Cin.. = exp
(ik'r), and obtain values for the ec, taking care with the self-
terms K.. Once the c, are known, we can evaluate the scattering
amplitude easily, and then obtain the cross sections equally
easily. For this formulation, a little algebra yields for the
scattering amplitude

f(k,f) = fA + fe (48)

13



where

fA(k,f) = id 3 (4rk)-1:i ZEexp (-i•t'r)(2ivi(-.) +Vv i (£O))iE

fI(k,f) = id 3 (41k) -lfitj Eexp((i' jv) (av-(r ) 1E

Experience with the DGF method in electromagnetic scattering
has shown that, in order to achieve accurate results, the cell side
length d must be chosen < ImL1-1, where m m refractive index of scat-
terer. (Remember, here _ is in units of (incident wavelength/27r)).
If the average linear extension of a turbule is a (length units),
then the number of cells needed is Ž(Imlka) 3 . It's not clear here
just what to use for an effective refractive index; but, roughly
speaking, the total wavespeed at any point _ in the turbule lies
between c,(l + v(r))) and c.(l-v(r)). Thus, the effective refrac-
tive index satisfies 1-v(r) S mu < 1 - v(r). Since v(r) << 1 in
applications here, then, the number of cells needed for accuracy
with the DGF method must be > (ka) 3 . Clearly, for large size
parameters ka, the inversion of (46) can be very demanding of
computer storage and time.

14



III. APPLICATIONS AND RESULTS

A. Model Turbule.

We have considered a nonuniformly spinning turbule model. We
chose the following function for the turbule flow,

(r) = (aXir) exp(-r 2 /(ka) 2 ) (49)

where

ii af-, = &va(ka)-, v, a na/c,, (50)

so that n is an angular velocity parameter.

The Gaussian is similar to what has been used recently for
density variations in a turbule with v=0 (McBride, 1989). The
length parameter a is a measure of the "radius" of the turbule.

Eqs. (17) should be satisfied. However, we have been unable
to find any spatially limited solutions of the first of these equa-
tions for (*,v). With the above v, we used the result that would
obtain if Vxv were equal to zero,

S= -v 2/2 = _ ½ a 2 (r 2 _( .) 2 )exp(-2r 2 /(ka) 2 ), (51)

as a simple choice for # which satisfies continuity and has the
correct magnitude, but does not satisfy the first of eqs. (17).
The results should be indicative of the magnitude and angular
dependence of the scattering cross sections of actual turbules, as
long as this model is quasistatic, i.e., as long as this density
variation and velocity structure persist for a time that is long
compared to the period of the incident wave. We assume that this
is the case. We note that the above-mentioned density variations
alone that have been used for a (quasistatic) turbule~cannot per-
sist either, according to eq. (17), for if v=O, then V*=0.

B. Born Approximation

1. Expressions for Scatterinq Amplitude. We substitute the
velocity - and disturbance * of eqs. (49 and 51) into Eqs. (39).
After some algebra, the contributions to the scattering amplitude
of eqs. (38) are found to be

fc•(kt) = - (a/2vk)cosOCJkirjdkJi (52)

fn 2 (k,f) - (a 2/41rk) (1-y + K2 /2)h(6•i - d±&j)Jij (53)

15



fc2),(k,f) = (a2/4irk) [(K2/4) ( 6 jij&jdj) + krk&1dpEri6mpj]Jij
(54)

where

Ji a i½w 3/ 2 (ka) 5 Ki exp(-(ka) 2 K2/4) (55)

Jj M 4¼(ka)5 [Sij - ¼(ka)2 KjKj](ir/2)3/2 exp(-(ka) 2 K2/8) (56)
and, as in eq. (40),

Ki m ki - f 1 , K2 = 2(1-cose) (57)

where 0 is the polar scattering angle, such that k'f = cosO. Note
that the observation direction is specified by the unit radial
vector f,

S= 61 sin~coso + ;2 sin~coso + e 3cosO (58)

in terms of the angle 0 and the azimuthal angle 0, where the el are
the Cartesian unit basis vectors.

With no loss of generality, we may take the unit incident wave
vector to be in the z-direction,

Jc = A3  (59)

The orientation of the spin axis of the model turbule is then arbi-
trary, so we have the unit spin axis vector given by

& = e- sine.coso. + eksineasino. + e3 cosO. (60)

In practice, it is easy to see that all differential cross
sections will depend on the difference (-0ja) only. Thus, we can
put 0, = 0 during calculation, and then simply replace 0 by 0-0, in
the results.

As discussed earlier, the (first) Born approximation should be
valid if the effective refractive index m satisfies Im-lika <<1.
Here, the "effective index" can probably be taken as m = 1 ± v,, as
discussed in the previous section on the DGF method. Thus, the
criterion for validity is

vaka << 1 (61)
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In practice, Im-lika up to unity is often used. For realistic
models, v, < 0.2, so the Born approximation results should be
fairly trustworthy for ka < 5, and very good for ka < 1, and better
the smaller v..

2. First Order Efficiencies. If we combine eqs. (33, 34, 50, 52,
55, and 57-60), we obtain

Q(1) (k) = (v 2 /16)(ka) 6sin 2Ocos2Osin2 .Sin 2 (_2 ) (62)

X exp(-(ka) 2 (l-cosf)]

This has rather striking dependence on the observation direction
and on the turbule spin axis orientation. It goes to zero if i)
0. = 0 or r, ii) 0 = . or r ± r, iii) 0 = 0, r/2, v. For exam-
ple, suppose that 0. = 7/2, * = 0. Then the scattering is zero at
at 0 = (O,r) and 0 = (0,v/2, w), and is max at 0 = (n/2, 3v/2) and
0 = (ff/4, 39/4). For ka > 1, the exponential becomes important,
and strongly reduces scattering in the backward hemisphere relative
to the forward.

This differential efficiency also has an unusual dependence on
ka, going as (ka)6, quite different from Rayleigh scattering, which
goes like (ka)' with very different dependence on scattering angle.

It is of great interest to consider the efficiency averaged

over random orientations of the spin axis. Since

(41r)- 1 fdn. sin2 0, sin2(0-0,) = 1/3 (63)

We get

< ,f)> = (v,2//48) (ka)6 sin 2 0cos20 exp(-(ka) 2(l-cos0)] (64)

This is plotted vs. 0 for several different values of ka in Figs.
1 and 2, for va = 0.1.

The total scattering efficiencies are obtained by integrating
(62 and 64) over all observation angles. This can be done analyti-
cally. After some algebra, we get

<Q(,) (k)> = (71v 2 /6) (ka)6 - b.I,((ka) (65)

where

b, = 0.5, b 2 = - 1.25, b 3 = 1, b 4 = - 0.25 (66)

and

In(x) p f.2dt En e•ef (67)
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Figure 1. Scattering efficiency vs. scattering angle for a spin-
ning turbule, including only first order contributions
for small size parameters.
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Figure 2. Scattering efficiency vs. scattering angle for a spin-
ning turbule, including only first order contributions
for large size parameters.
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A plot of Ql')()k) vs. ka is given in Fig. 3, for v, = 0.1.

beto=1.O va=O.1
.004 I

.003

U

2 .002 -
0
4)

0
4)

0

.001

.000V0 0.5 1.0 1.5 2.0
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Figure 3. Average scattering efficiency vs. size parameter for a
spinning turbule, including only first order contribu-
tions.

It is important to look at limits for ka<<l and ka large. For
example, for ka < 0.1, I,((ka) 2) =2n÷1/(n+1). Thus, for ka < 0.1,
Q(1),(k) is proportional to (ka)6. However, for (ka) > 4, I,((ka) 2)
Sn!/(ka) ÷2 , so the behavior of Q(1),(k) is given by that of the
leading term in the sum (65),

Q(1) (ka>4 (7rv 2./12) (ka)2 . (68)

This proportionality to (ka)2 is typical of the Born approximation,
and is wrong for very large ka. Just as in electromagnetic scat-
tering, the total scattering efficiency should be independent of ka
for very large ka.

3. Second Order Efficiencies. If we combine eqs. (33, 34, 50, 52,
53, 54, 56, and 57-60), we get expressions for the second order
scattering efficiencies. These are much too lengthy and compli-
cated to write down in detail. The method is given in Appendix A.

19



In particular, we calculated only the averages over spin axis
orientation. The general form is

<42 (V X

,) = (v 4>512) x2 e-X En 0  Fn(x) (69)

where

x = (ka) 2/2 , l-cos0 (70)

and the F,(x) are complicated polynomials in x and x2 . It is these
functions that are very lengthy expressions. But, for x << 1, we
find simply

Fo(X) = (1-y) 2 + ( 4 3/ 3 )(1-y) + 8B/15

F,(x) = 2(1+8)(1-y + 2B/3) (71)

F2 (x) = (1+3)2

F3 (X) = F4(X) = 0,

where we have dropped all terms containing (x, x2). Here, B is
either zero or unity. If we choose 8=1, we get the second order
result that includes both f(2)n and f(2)v, eqs. (53) and (54). If we
choose B=0, we get the second order result for a density variation
only, where the * function is, however, still given by eq. (51).

The expression (69) for <Q2 (k,f)>, using complete expressions
for the F,(x), is plotted in Figs. 4 through 7 against scattering
angle 0, for several values of ka, for v, = 0.1, for y = 5/3. Note
that its maxima are about two orders of magnitude smaller than
those of the first order contributions, as we would expect for
small v. and for these values of ka.

The total scattering efficiency is then given by the integral
over solid angle of (69). The result is

(k)> = (wv4./256)x 2 E•.0 F,(x) I,(x) (72)

where the I,(x) are defined by eq. (67). This scattering effi-
ciency is plotted as a function of ka in Figs. 8 and 9. We note
from eqs. (72) and (67) that, for small ka (small x), this is
proportional to (ka) 4 , not (ka)6 as for the first order contri-
bution. This means that, for large enough v. and small enough ka,
the second order contributions could dominate the first order. But
for the realistic parameter choices made here, namely v, = 0.1 and
0.25 < ka < 2, the first order is totally dominant.

Note that there is no interference between first order and
second order contributions. Eqs. (52) through (57) reveal that the
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first order scattering amplitude is purely imaginary, while the

second order ones are purely real. Thus, when we write

f = f(I) + f( 2• ) ilf ) I + If( 2)1 (73)

then we get simply

If12  = If(Il + If(•'l 2  (74)
Thus, the principal contributions of the flow to the efficiencies
go like v2,, while the leading contributions of the density
variation go like v4,.
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IV. DISCUSSION

The principal theoretical and calculational results of the
work reported are those mentioned in the introduction. We rephrase
them somewhat here: i) In order for a quasistatic density varia-
tion to exist in an isentropic ideal fluid in the absence of gravi-
tational and Coriolis effects, a quasistatic flow must also exist,
and according to eqs. (17) the relative density variation is pro-
portional to the square of the small ratio of flow speed to
asymptotic acoustical wavespeed, ii) The fundamental fluid equa-
tions yield wave equations (18) for small-amplitude acoustic
disturbances superimposed on the quasistatic flow and density
variation of a model turbule. These wave equations contain terms
linear in the flow speed ratio, which should then produce more
scattering than the associated density variations; and iii) The
first Born approximation calculations of scattering by a non-
uniformly spinning Gaussian model turbule show that the contri-
butions to the scattering of the terms linear in flow speed in the
wave equations are indeed about three orders of magnitude larger
than the contributions of the terms involving the density varia-
tions, for size parameters from 0.25 to 2.0, for flow speed ratios
< 0.1. For example, Figs. 3 and 8 show that the first order total
scattering efficiency, due to the associated quasistatic density
variations alone, is about 10-7, for a size parameter of unit, and
a flow speed ratio of 0.1.

Further investigation seems desirable, and is planned.
Efforts probably should include i) Realistic modeling of other
quasistatic turbules that include flow, such as smoke rings
(toroidal vortices). This would require modification of the
scattering equations, since such vortices must translate in still
air; ii) Extension of the DFG method; iii) Possible application of
eikonal approximations similar to those that have been used with
great success for large size parameters in quantum mechanics and,
recently, in electromagnetic scattering by dielectric particles
(Chen, 1989).
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Figure 4. Scattering efficiency vs. scattering angle for small
size parameters, for turbule with density variation only
(no flow).
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Figure 5. Scattering efficiency vs. scattering angle for large
size parameters, for turbule with density variation
only (no flow).
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Second order Born approximation
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Figure 6. Scattering efficiency vs. scattering angle for
size parameters 0.25 to 1.0, for spinning turbule,
including only second order contributions.
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Figure 7. Scattering efficiency vs. scattering angle for
size parameters 1.25 to 2.00, for spinning tur-
bule, including only second order contributions.
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Second order Born approximation
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Figure 8. Average scattering efficiency vs. size parameter for
the case of density variation only (no flow) in the
turbule.

Second order Born approximation
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Figure 9. Average scattering efficiency vs. size parameter for
a spinning turbule, including only second order
contributions.
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APPENDIX A. ORIENTATION-AVERAGED CROSS SECTIONS

The total second order scattering amplitude of eqs. (53) and
(54),

f (2) = f (2 ) + fv(2), may be written as

f( 2 ) = (ct2/87Tk) J(x,t) F(x,Z,qp,80 ) (Al)

where

U 1 - cosO, x = (ka) 2 /2 (A2)

J(x,0) M a3/2 x 5/2 e-xc (A3)

F(x,t,O,0.) = C(x,t) + S(x,tqi.) (A4)

C(x,t) = A(E) (2-xt) (AS)

A(t) = ½[1-y+t(l+B)] (A6)

S(x,tip,0.)= ½ x A(k)D(t,q,O.) + Bsin28.(l-½xsin28sin2 )
(A7)

D(E, 9,8c) = • 2cos 2O. + sin 2 sin28.cos2 9-2ýsin~sinO.cosS.cos9

(A8)

We want to calculate <F 2>, where

<S(O.,(p)> a (4•)-1 f. 2" di f." dO. sinS. G(O.,ip
(A9)

with G(O8,9) any functions of these variables.

We see that

<F 2> = C2 + 2C<S> + <S2 >
(A10)

In order to evaluate the various averages, we need

<cosq> = <sinV> = 0, <cos 2qp> = <sin21> = ½

<sin20a> = 2/3, <cos 20.> = 1/3 (All)

<sin'81 > = 8/15, <cos 4O.> = 3/15

<sin28(cos 2 80> = 2/15, <cos49> =<sin49> = 3/8
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From these, we get

<D> = 2(/3 ,<D2> = 4E2/5

<Dsin 2(> = 8E/15 - 2 t/15 (A12)

<Dsin f 2(sin 29> = 2t/15

Then, we get

<S> = (28/3)[1-x(2t-_E)/4] (A13)

<S2> = X2A 2E/5 + 88/15 - (48/15)(2 -E2)X (A14)

+ 8(2�-t2)2 x2 /20 + BAx(8t/15 - 2 E/15-E(2t-E )X/15)

Then

2C<S> = 8(2-xE)(4A/3)(1-x(2- _ 2 )/4] (A15)

C2 = A2 (2-x )2  (A16)

If we combine these according to eq. (A10), we may rearrange terms
so that the result looks like

<F2 > = E'4n0 Fn(X) V (A17)

Using (A2,A1) and a = (va)/(ka) , x = (ka) 2/2, yields the
expression (69) of the text.
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APPENDIX B. SUMMARY OF RELEVANT FORMULAS

A model spinning turbule was chosen to have the following

quasistatic flow velocity V-(?) and molecular number density

n. (f):

v(.?) = (Lx.?)exp(-r 2/a 2 ) (BI)

no(f) = -n.v2/(2c;) (B2)

This represents a non-uniformly spinning turbule, with angular
velocity parameter A about an axis d through the origin of coor-
dinates. The quantities (nr,c,) are the background (number density,
wavespeed) far from the turbule; the parameter a is an "effective

radius" of the turbule; f is the position vector. The expression

for n0 (f) follows approximately from the assumption that turbules

are formed adiabatically.

If an acoustic plane wave with propagation vector i , where

k = 2v/1 = w/c., w = angular frequency, is incident upon this model

turbule, then the scattering amplitude f( f ,) in first Born

approximation is given by

f(jf) = f(j) + f1 2 ) + f(2) (B3)

where f(1) is linear in n, and f( 2) is quadratic in f. The differen-
tial scattering cross section then turns out to be given by

If(• .) = f + If,2) + f(2) 12 (1) + y(2) (B4)

The expressions for f(l) and f(2) are as follows:

f(1)(Jf) = _ (C 2 /2nk) cosOejki 0 kJi (B5)

fn(2) (,E) = (U 2 /47ck) (I - y + K2/2) 1 /2 (8ij - 01CJ) Jjj (B6)
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((2 (J2 /41ck) ((K2 /4) -(B7)

+ kfQSOc Oerii e"Pi}Jij

where

a (B8)

J= i ½ ff3 / 2 (ka)S KE exp(-(ka)2 K2/4) (B9)

J= ¼(ka)5 [6,j - ¼(ka)2 KKj] (w/2)3/2 exp(-(ka) 2K2/8 (B10)

and

Ki -k, - :t, K2 = 2(1 - cos 0), (BI1)

when 0 is the polar scattering angle, the angle between k and the

observation direction 2 = 61sin0cosi + C 2sin~sin + C3cosE. These

equations (B5) through (B1I) are the same as eqs. (50) and (52)
through (57) of the text. Here 0 is the azimuthal scattering
angle.

The differential cross section is given by inserting (B5)
through (B7) into (B4). It depends on the azimuthal angle 0 as
well as on the polar angle 0. For example, the scattering
efficiency from a( = Ifcl)12 is

Q•l)(k,f) =- a1) / a2

=(Oa/4c.) 2 (ka)6 [sin0cos0sin0asin (4 - OQ)] 2  (B12)

where (0n,) are the (polar, azimuthal) angles of the spin vector
h i.

There is interest in the average of these differential cross
sections over random orientations of the spin axis. These were
obtained in two ways, analytic and numerical. The analytic method
is outlined in the text and in Appendix A. The numerical method
simply numerically averages over uniformly spaced values of cos6n
and On. The results of this latter method agreed with those of the
former, which are displayed as Figs. 1 through 9 of the text. The
analytic relation is

(0(1) (k,2)) = (2/3) (Qa/4c.) 2 (ka) ' (sin0cos0))2  (B13)
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If Ej is the incident exitance (watt.m-2 ) of the sound field and
1(0) is the intensity (watt.sr-1 ) of the remote scattered field at
the off-axis angle 0, then

1(e) = :a 2 (Q(1) (k,f))E1  (B14)

The cross section a( 2 ) is much smaller than a"), for realistic
choices of the parameter na/c. <<1.

The total cross sections, defined by

a W (k,f) = fd cy(1)(k,f),i = 1,2 (B15)

or rather the scattering efficiencies Q(i) = acira 2 , were also
obtained both analytically, as described in the text and in
appendix A, and numerically, by numerical integration over (0,0).
Here, d n= sin 0 d Od 0 = solid angle element. The results agreed.
The analytic total scattering efficiency for a€l) is

(0(1) (k)) = (7c/45) (Qa/c.)2 (ka) 6  (B16)

Some authors, especially in radar scattering, relate the differen-
tial scattering cross section to the ideal isotropic scatterer.
The scattered field from the ideal isotropic scatterer is the same
for all scattering angles 0 with magnitude of the total cross
section times the incident exitance divided by 4r. The actual
field from a non-isotropic scatterer is then the magnitude of the
previous sentence times an appropriate function of 0 called the
phase function. This information is provided to alert the reader
that there is a quantity of 4w applied in the radar scattering
concept that is not needed in the development of this report.
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